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Abstract

Controlling shape-changing bodies in zero-gravity is complex but critical for tasks
like space robotics or animation. We extend a motion planning algorithm for shape-
changing bodies to the control of non-zero momentum. By formulating physical mo-
tion as a energy-minimising trajectory on a configuration manifold, we enable the
discovery of non-trivial, physically valid motion paths that combine shape change
with momentum control. The use of a stable variational integrator for the forward
simulation leads to an efficient optimisation algorithm. We validate our method on
abstract mechanical systems such as rigid bodies and a hinged flap with thrusters.
This approach can inform motion planning in space robotics, reinforcement learning,
and procedural animation.1

1Project code is available at https://github.com/orfeasliossatos/master-project
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Chapter 1

Introduction

Consider a falling cat, a platform diver, or an astronaut. In a reference frame moving
with their trajectory, that is, where external forces are negligible, they are able to
reorient themselves purely through internal shape changes. In this section we discuss
how this is possible by putting ourselves in the boots of an astronaut, contrasting the
Newtonian and Lagrangian perspectives on the dynamics of shape change. Next we
discuss the challenges of controlling a shape-changing body via external forces such
as the thrusters on a jetpack, before concluding with an overview of the project itself.

1.1 Turning around in space

In the microgravity of space, where there is nothing to push against, the law of con-
servation of momentum governs the motion of the astronaut. If the astronaut swings
their arms to the left, their whole body swings to the right, and vice-versa. As a
result, the astronaut cannot shift their centre of mass by moving their arms around.
However, through a coordinated sequence of body movements, it is possible to redis-
tribute angular momentum throughout the body, resulting in a total reorientation.
For instance, an astronaut at rest can turn around by repeatedly sweeping their arms
in a circular motion parallel to the ground. From a Newtonian perspective, muscles
exert equal and opposite forces at their points of attachment, which allows one part of
the body to rotate one direction while another rotates another direction, ensuring the
constancy of angular momentum. However, since the opening and closing motions of
the circle are not symmetric, the arms experience net torque during the motion, and
the rest of the body experiences the opposite torque because angular momentum is
conserved. So when the circular motion is closed and the arms return to their initial
position, the astronaut has reoriented themself. This principle can be felt on Earth
using a swivel chair and a heavy book.

This point-wise perspective is instructive, and readily leads to a proper computer
simulation by integration of the second order forces. However, deriving the internal
forces acting pointwise on the body is a potentially non-trivial and tedious exercise,
depending on the complexity of the system. Complementing the Newtonian point
of view is the following Lagrangian perspective on the dynamics, which expresses
equivalent equations of motion in purely geometric terms. Think of the changing
shape of the astronaut as a curve in a space of astronaut shapes. Then the actual
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configuration of the astronaut is given by rigidly transforming the shape onto some
position in space. So the total configuration space naturally decomposes into shape
and rigid transformation. Euler’s least action principle then states that when the end
points of a configuration curve are fixed, the motion achieved by a shape changing
body is a curve that locally minimizes the kinetic energy of the body. Now suppose
that the astronaut makes some periodic motion with their body, like drawing a circle
with their arms. This constitutes a closed curve in shape space. So how does this
result in a reorientation of the body? The idea is that the configuration space is
intrinsically curved, and so a closed curve in shape space, when lifted to a curve on
the total configuration space, can exhibit a so-called geometric phase.

By way of analogy, consider a closed curve on a sphere. Lifting the curve to
the sphere’s tangent bundle means selecting smoothly varying vectors in the tangent
spaces traversed by the curve. Assuming the vectors are parallel, in the sense that
that their derivative along the curve is zero, then the lifted curve itself may not be
closed due to the curvature of the sphere. To feel this intuitively, one can stick their
arm out, thumb pointing up. Then draw a large circle with their arm while keeping
their wrist straight. On completing the circle, the thumb will point in some other
direction. So the curve in thumb-space is not closed, and the difference between the
original thumb direction and the new thumb direction is called the geometric phase.

We adopt this geometric perspective because it elegantly leads to explicit equations
that are convenient for the computational simulation of the motion of shape-changing
bodies. Another advantage of this perspective is that we need not explicitly state how
the shape change comes about, we need only describe which shapes are possible at all.
Finally, the geometric perspective is entirely equivalent to the Newtonian perspective,
and we will show how one leads to the other through Euler’s principle of least action
and a Riemannian version of Noether’s theorem.

1.2 Propulsion of shape-changing control systems

So far we have only considered systems with constant momentum. In this project,
we break this assumption and aim to directly control the momentum of a shape-
changing body via external forces. We take inspiration from dynamical systems that
simultaneously leverage forces and shape change for motion. Consider for example
the gimballed rocket engines of the Saturn V rocket and Space Shuttle. The direction
of thrust can be turned away from the centre of mass of the rocket, which generates a
torque about the centre of mass, allowing the the rocket to be controlled. Gimballed
rockets are highly unstable, so the simultaneous control of thrust and shape change
must be precisely understood for correct motion planning.

The same can be said for the Manned Maneuvring Unit, an astronaut jetpack
designed for free flight in space [7]. NASA astronauts were once tasked with recovering
a pair of satellites that did not reach their proper orbit [5]. The astronauts had to
approach the satellites, grab them, slow their tumbling, and fly them back to the Space
Shuttle. Consider again the control problem at hand. Although the jetpack features
multi-directional thrusters, the astronaut can purposely change the direction of thrust
by rotating their arms, shifting the orientation of the whole jetpack-astronaut system.

Thus, controlling the flight of a shape-changing body remains an important and
challenging task. For instance, there is interest in piloting robotic arms for the purpose
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Orfeas Liossatos CHAPTER 1. INTRODUCTION

of repairing satellites and collecting space debris [1], which calls for efficient algorithms
and a framework which allows us to study the interplay of forces and shape changes
necessary for the motion planning of such systems. To this end, we extend the inverse
design framework of Becker et al. to the control of momentum and forces. Once
again, the abstract framework grants us the power of generality. In order to check
our intuition, and gain a complete understanding of the control algorithm, we focus
on highly simplified and abstract dynamical systems, with few or no moving parts,
such as a totally rigid body and a single hinged flap.

1.3 Project overview

The purpose of this project is to extend the framework of Becker et al. to the si-
multaneous control of momentum and shape change. In chapter 2, we cover the
necessary elements of geometric mechanics to describe the continuous motion of a
shape-changing body in terms of an equivalent action principle. In chapter 3 we
discuss the inverse design problem of motion planning with momentum and shape
change. In chapter 4, we discretize the equations of motion and lay out the opti-
misation algorithm. In chapter 5 we apply the method to a few abstract dynamical
systems in computer simulation. In chapter 6 we discuss the power and limitations
of this approach.
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Chapter 2

Background

We begin by describing the geometric mechanics of the space where the dynamics
play out [9].

2.1 Rigid body mechanics

To describe how a shape is positioned in space, and how it is moving, we use the
special Euclidean group SE(3), the group of rigid body transformations.

Lie group A rigid body transformation g ∈ SE(3) may be represented as a pair
g = (A, b), where A ∈ SO(3) is a rotation matrix and b ∈ R3 is a vector. These
transformations act on R3 via

g : R3 → R3, x 7→ Ax+ b,

applying a rotation followed by a translation. Being both a group and a smooth
manifold, SE(3) is a Lie group. In the context of rigid body mechanics, moving an
object rigidly with g induces a change of frame of reference from the object’s point of
view such that a fixed point xworld ∈ R3 in the world frame located at xbody ∈ R3 in
the initial body frame would be seen as moving to g−1 ·xbody in the final body frame.

Lie algebra An infinitesimal rigid body transformation Y ∈ se(3) := TId SE(3) may
be represented as a pair Y = (ω, v), where ω ∈ R3 specifies the skew-symmetric matrix
[ω]× corresponding to the cross product ω × ·, and v ∈ R3 is a vector. Every tangent
vector in Tg SE(3) is the left-translation gY of some Y ∈ se(3) by g (Figure 2.1).

Dual Lie algebra A body momentum µ ∈ se(3)∗ may be represented as a pair
(l, p) ∈ R3 × R3, containing angular and linear momentum respectively. Its duality
pairing with elements Y ∈ se(3) is given by

⟨µ|Y ⟩ = ⟨l, ω⟩+ ⟨p, v⟩,

where the bilinear operator ⟨·, ·⟩ is the standard inner product on R3. An infinitesimal
momentum, or body force f ∈ se(3)∗ may be represented similarly.
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Orfeas Liossatos CHAPTER 2. BACKGROUND

Figure 2.1: A depiction of the special Euclidean group.

Coadjoint action Given a rigid transformation g ∈ SE(3), the group coadjoint
action Ad∗g : se(3)∗ → se(3)∗ is given by

(l, p) 7→ (Al + b× p,Ap),

and it expresses the momentum or forces exerted in a reference frame given by g to
the world frame (given by Id ∈ SE(3)). We use the notation µworld = Ad∗g µbody and
fworld = Ad∗g fbody.

2.2 Configuration manifold

The configuration spaceM is a Riemannian manifold of shapes in correspondence in
R3. This contains all the possible states of the dynamical system. That is, all shapes
in all positions.

Shape space Two bodies γ1, γ2 ∈M have the same shape if there exists a transfor-
mation g ∈ SE(3) such that γ2 = g ·γ1 pointwise. This defines an equivalence relation
on M with equivalence classes

[γ] = {g · γ : g ∈ SE(3)} ⊂ M

for any γ ∈ M. The quotient projection π :M→M/ SE(3) defines the shape space
S :=M/ SE(3).

Product manifold The configuration spaceM is isomorphic to S×SE(3), meaning
that we may refer to configurations by a pair (s, g) containing a shape s ∈ S and a
rigid transformation g ∈ SE(3) that places the shape in the world frame by the action
γ = g · s. Given a sequence of shapes s : [0, T ] → S, we will be interested in certain
choices of lifts s 7→ (s, g) to the full configuration space. Not all lifts are physically
meaningful, but we will show how to find lifts that obey physical law, specifically
Euler’s Least Action principle.
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Riemannian metric The metric ⟨·, ·⟩M is used to model the kinetic energy of
the body in a vacuum. The metric therefore accounts for the mass distribution of
the body. We choose an SE(3)-invariant metric, meaning ⟨gZ1, gZ2⟩M = ⟨Z1, Z2⟩M
for any g ∈ SE(3) and Z1, Z2 ∈ TM, so that the energy of a motion trajectory
is invariant under global rigid body motions. This means the Lagrangian of our
system has symmetries, which ultimately gives rise to known physical laws such as
the conservation of momentum for rigid bodies via Noether’s theorem (Theorem 1).

2.3 Physics of shape change

We will summarise the equations of motion for shape-changing bodies in a vacuum.

Principle of Stationary Action We view motion as a time-varying configuration
γ : [0, T ] →M. In the absence of forces, the Euler-Lagrange principle of stationary
action states that physical motions between fixed start and end configurations are the
stationary points of the energy functional

E (γ) = 1

2

∫ T

0

⟨γ′, γ′⟩Mdt, (2.1)

under variations of γ, where γ′ : [0, T ] → TM is the tangent curve to γ, and the
metric onM computes the kinetic energy in a vacuum. A variation is an assignment
of a tangent vector to each point along γ, so it is the restriction to points in γ of a
vector field δγ ∈ ΓTM, the collection of all vector fields.

Vertical distribution Motion planning requires knowing which rigid body trans-
formations will result from a body undergoing shape change. So we assume that the
shapes t 7→ s(t) of the time-varying configuration are known, and we look for station-
ary curves under variations of the sequence of rigid body transformations t 7→ g(t).
To construct a notion of variation purely in the direction of an infinitesimal rigid body
motion Y ∈ se(3), consider some curve ε 7→ h(ε) ∈ SE(3) such that h′(0) = Y and
h(0) = Id. Then we can build a so-called vertical vector field Ŷ ∈ ΓTM on the full
configuration space with vectors

Ŷγ =
d

dε

∣∣∣∣
ε=0

h(ε) · γ,

for all γ ∈M. This shows that vertical vector fields Ŷ ∈ ΓTM and infinitesimal rigid
body motions Y ∈ se(3) are in one-to-one correspondence. The collection of all such
fields is called the vertical distribution V ⊂ TM. A vertical variation is then nothing
other than a curve in V .

Killing vector field We will now show that a vertical vector field Ŷ ∈ ΓTM is also
a Killing vector field. Geometrically, this means that curvature does not change along
Ŷ . Physically, it means that energy is invariant to infinitesimal changes of position
and orientation. Recall that for any g ∈ SE(3) and Z1, Z2 ∈ TM we have

⟨gZ1, gZ2⟩M = ⟨Z1, Z2⟩M.
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This can also be seen as the pullback of g on the bilinear form ⟨·, ·⟩M, written

(g∗⟨·, ·⟩M)(Z1, Z2) = ⟨·, ·⟩M(Z1, Z2),

because g is an isometry, so g∗ is an identity map. Now pick some vertical vector field
Ŷ ∈ ΓTM built from the family ε 7→ h(ε) ∈ SE(3) with h′(0) = Y . Then the Lie
derivative of the metric ⟨·, ·⟩M along Ŷ is

LŶ ⟨·, ·⟩M :=
d
dε

∣∣∣∣
ϵ=0

h(ε)∗⟨·, ·⟩ = 0

because h(ε)∗ is the identity for every ε. This makes Ŷ a Killing vector field by
definition. Equivalently, in terms of the Levi-Civita connection we have

⟨∇Z1
Ŷ , Z2⟩M + ⟨Z1,∇Z2

Ŷ ⟩M = 0

for any Z1, Z2 ∈ TM [6]. Now if we let Z1 = Z2, the following lemma will prove
useful.

Lemma 1. If X ∈ ΓTM is a Killing vector field and Z ∈ TM, then

⟨∇ZX,Z⟩ = 0.

Proof. By rearranging the definition of a Killing vector field, we have

⟨∇ZX,Z⟩M = −⟨Z,∇ZX⟩M.

Now notice that the Riemannian metric is symmetric, so

⟨∇ZX,Z⟩M = −⟨∇ZX,Z⟩M,

which is only possible for a real number if it is zero.

Dynamics on the tangent bundle Now we derive the equations of motion on the
tangent bundle TM. For a variation t 7→ δγ(t) with fixed endpoints δγ(0) = δγ(T ) =

0, integration by parts on a manifold yields

δE(γ) = 1

2

∫ T

0

δ⟨γ′, γ′⟩dt =�����:0
[⟨δγ, γ′⟩]T0 −

∫ T

0

⟨δγ, γ′′⟩dt. (2.2)

Now suppose we consider only vertical (rigid body) variations, so that δγ ∈ ΓV .
The following theorem, a Riemannian variant of Noether’s theorem, establishes that
stationary motion trajectories have a conserved quantity for each symmetry of the
Lagrangian Equation 2.1

Theorem 1 (Riemannian Noether’s Theorem). A curve t 7→ γ(t) is a stationary point
of E(γ) under vertical variations with fixed endpoints if and only if for all δγ ∈ V ,

⟨δγ, γ′⟩M

is constant as a function of t.

10
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Proof. For the first direction, choose a vertical variation δγ ∈ V . Since δγ is vertical,
it is also Killing, so by Lemma 1, we have

⟨δγ, γ′⟩′M = ⟨∇γ′δγ, γ′⟩M + ⟨δγ, γ′′⟩M = ⟨δγ, γ′′⟩M. (2.3)

Then by taking arbitrary sub-intervals of Equation 2.2, the criticality assumption
δE(γ) = 0 shows that

⟨δγ, γ′′⟩M(t) = 0,

for all t ∈ [0, T ], and thus ⟨δγ, γ′⟩M is constant as a function of time.
For the converse, Equation 2.3 shows that ⟨δγ, γ′′⟩M = 0, so we immediately have

δE(γ) = 0.

Conservation of momentum Theorem 1 can be interpreted as the conservation
of momentum. Suppose that the infinitesimal rigid body transformation Y ∈ se(3)

represented by (ω, v) generates the vertical vector field Ŷ , and that the body γ(t) has
mass density ρ. Then by expanding the metric onM we recover the pairing of linear
and angular momentum with Y , since

⟨Ŷγ(t), γ
′(t)⟩M = ⟨ω × γ(t) + v, γ′(t)⟩M

=

〈∫
γ(t)

x× x′dρ(x), ω

〉
+

〈∫
γ(t)

x′dρ(x), v

〉
:= ⟨µγ′(t)|Y ⟩,

where ⟨·|·⟩ is the duality pairing on se(3). From considering motions Y = (ω, 0) we
conclude that the angular momentum

∫
γ(t)

x×x′dρ(x) is conserved, while considering
only Y = (0, v) yields the conservation of linear momentum

∫
γ(t)

x′dρ(x). Since ω

and v are vectors in R3, there are a total of 6 conserved quantities. This motivates
the definition of the momentum map

µ : TM→ se(3)∗, Z 7→ µZ ,

returning a geometric momentum ⟨µZ |Y ⟩ := ⟨Ŷ , Z⟩M. Then combining Theorem 1
with the identification se(3)∗ ∼= R3 × R3 implies the conservation of momentum

µγ′(t) = µ0 ∈ R3 × R3,

which, as a constraint in six equations and six unknowns (the components of the
future rigid body transformation) is nicely enforced in a computer by solving the
differential equation, which is first order.

External forces So far, we have described the motion of a body in the absence of
external forces. However, we are in particular interested in controlling the momentum
of a shape-changing body for motion planning. Supposing the body is initially at rest
(µ0 = 0), with time-evolving momentum t 7→ µworld(t). In that case, we instead write

µγ′(t) = µworld(t).

Then, according to Newton’s second law, the body must be pushed by a continuously
evolving world force t 7→ fworld(t), which is the rate of change of momentum

dµγ′(t)

dt
= fworld(t).

11



Chapter 3

Inverse Design

Previously, we described a procedure for lifting a prescribed shape sequence t 7→ s(t)

to a full configuration sequence t 7→ γ(t) by finding a physically consistent sequence of
rigid body transformations t 7→ g(t) with time-dependent momentum t 7→ µworld(t).
In this chapter we formalize the inverse geometric propulsion problem. That is,
searching for shapes and momenta that minimize an objective function J of the form

J : (γ : [0, T ]→M)→ R≥0,

while maintaining physical consistency as the constrained optimisation problem,

argmin
s:[0,T ]→S

µworld:[0,T ]→se(3)∗

J (γ) s.t. µγ′(t) = µworld(t), ∀t ∈ [0, T ]. (3.1)

This formulation does not reference forces directly, and this is by design. In the
following, we discuss the kinds of motion objective functions we use in our experi-
ments, and various ways of parametrising the shape and momentum sequences. In
particular, force-based parametrisations of the momentum allows regularising e.g.,
fuel consumption, more naturally.

3.1 Motion objectives

A basic motion target is the requirement that the body reaches a position and orien-
tation by the end of the motion. This positioning target is expressed by the objective
function

Jpos(t 7→ g(t)) =
1

2
∥g∗ − g(T )∥2SE(3),

where g∗ ∈ SE(3) is the target position, and ∥ · ∥SE(3) is a norm on SE(3). If a
sequence of targets (g∗k) are to be reached at a sequence of prescribed times (tk), then
the checkpoints objective function expresses it via

Jcpt(t 7→ g(t)) =
∑
k

1

2
∥g(tk)− g∗k∥2SE(3).

An example motion path optimising for the checkpoints objective can be seen in
Figure 5.1 and others. Note that there exist more flexible objective functions where
the time-points (tk) are unspecified, constructed for instance with chamfer distances,
or smooth versions thereof [3].
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Shape objectives One may also specify a number of shape objectives, for example
to promote motion that avoids collision with obstacles. In our experiments, we focus
on position-based objectives and highlight effects related to our contributions.

3.2 Design variables

We may wish to parametrise semantically meaningful regions of the shapes and mo-
menta with higher-level design variables, such as body angles and forces. We use
gradient-based methods for optimisation and require the map from parameters to the
shapes and momenta to be differentiable.

3.2.1 Shape parametrisation

In physical scenarios, we may not have control over each individual point of a shape,
and instead control groups of points through shape parameters. For example, we
may wish to control the joint angles of a robotic arm, or the muscles of a soft-
bodied creature. Therefore, we conceptualise a parametrisation as a differentiable
map φ : P → S from a parameter space P ⊂ Rp to the shape space S, where the
image of φ is understood as the set of admissible shapes.

Dihedral angles In our experiments we focus on the simple mechanical system of
a hinge Figure 5.5. The hinge is parametrised by a single dihedral angle that opens
and closes the hinge. The dihedral angle then controls the rotation of a mesh around
the axis of the hinge, where an angle of 0 degrees represents a fully opened hinge and
angles π/2 and −π/2 represent fully closed hinges in either direction.

3.2.2 Momentum parametrisation

In section 4.2, we show how to control the world momentum t 7→ µworld(t) ∈ R3×R3of
a shape changing body, in order to achieve some motion objective. In the following we
show how the world momentum itself can be computed from various other quantities
summarised in Table 3.1.

Body momentum We may directly design the momentum as seen from the moving
body frame via the group co-adjoint action

µworld(t) = Ad∗g(t) µbody(t)

World forces By Newton’s second law, we parametrise the momenta by world
forces

µworld(t) =

∫ t

0

fworld(τ)dτ.

Body and directional forces In physical scenarios it makes more sense to control
body forces, which are intended to be applied to the centre of mass of the shape
over time and are viewed in the fixed body frame. If in the fixed body frame, the
shape’s centre of mass is located at xcom, then a body placed at g ∈ SE(3) experiences
world-frame forces,

fworld = Ad∗g·gcom(fbody),

13
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where gcom = (I3, xcom) ∈ SE(3) translates the body forces to centre of mass. There-
fore, to simplify the mathematics, we assume that shapes are always centred on their
centre of mass, so that xcom = 0 and

fworld = Ad∗g(fbody).

For physical systems such as rockets, we may only have control of the magnitude of
the forces, but not their direction, which is given by a normalised vector ffixed. In
that case we have

fworld = Ad∗g(∥f∥ffixed).

Offset and pinned forces If a force instead pushes at some fixed offset from the
body’s origin, where the offset is given by a rigid body transformation h ∈ SE(3),
then we have

fworld = Ad∗gh(foffset).

An advantage of offsetting forces is the ability to optimize multiple forces simulta-
neously at different offsets. Pushing this idea further is the ability to pin a force
onto the shape change itself, such as the force aimed by a gimballed rocket nozzle.
Mathematically, we define a differentiable map h : P → SE(3) from shape parameters
to offsets such that a body (s, g) experiences forces

fworld = Ad∗gh(s)(fpinned)

in the world frame.

Quantity Relation to µworld(t)

Body momentum µbody Ad∗g(t) µbody(t)

World forces fworld

∫ t

0
fworld(τ)dτ

Body forces fbody
∫ t

0
Ad∗g(τ) fbody(τ)dτ

Thrust ∥f∥
∫ t

0
∥f∥(τ)ffixeddτ

Pinned forces fpinned
∫ t

0
Ad∗g(τ)h(s(τ)) fpinned(τ)dτ

Table 3.1: Table of world momentum parametrisations.

3.3 Regularisation

If it is desired that the forces t 7→ f(t) are minimal, expressing the need for the
economical use of fuel, then one can simultaneously minimise a L1-regularisation
function such as

R(t 7→ f(t)) =

∫ T

0

∥f(t)∥1dt,

in order to encourage sparse activation of forces. The regularisation terms and motion
objective functions may be linearly combined with weights λ > 0, but this creates a
trade-off between objectives, as we explore in Figure 5.3.

14



Chapter 4

Method overview

We describe an algorithmic approach to the inverse geometric propulsion problem.
To achieve this, we propose an extension of the methods presented by Becker et al.,
for which we provide a brief overview.

4.1 Discretisation

The configuration space M of bodies is discretised as M := (R3)N , where a body is
represented by an ordered list of vertices

(γ1, . . . , γN ) ∈M.

Therefore, the discrete shape space is the corresponding quotient S := M/SE(3),
and we study time-discrete sequences of bodies (γ1, . . . , γT ) ∈ MT with fixed-length
time-steps ∆t = 1.

Discrete variational energy The discrete version of Equation 2.1 is

E(γ) =
1

2

T−1∑
t=1

⟨∆γt+1,∆γt+1⟩M ,

where ∆γt+1 := γt+1 − γt and ⟨·, ·⟩M is an SE(3)-invariant Riemannian metric on
M . While we could consider both isotropic and anisotropic dissipation metrics as in
Becker et al., we focus on purely inertial settings (the former case), so the metric
models kinetic energy and is given by

⟨u, v⟩M =

N∑
j=1

mj⟨uj , vj⟩R3 ,

with masses mj at each vertex. In our experiments involving surface meshes, the
mass at a vertex is proportional to the area of its Voronoi cell, and thus may in
principle evolve over time if the total surface area of the mesh changes. However, our
experiments only involve area-preserving transformations of the mesh (like folding
about an axis), and thus the masses are computed once and kept constant.
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Integrating shapes to motion Given a sequence of input shapes (s1, . . . , sT ) and
world momenta (µ2, . . . , µT ) the motion trajectory of the body is uniquely determined
up to a global rigid body transformation. So fixing the first rigid body transformation
g1 = Id ∈ SE(3) determines the rest by solving the physical consistency constraint at
each time step. Specifically, the choice of rigid body transformations (g2, . . . , gT ) ∈
SE(3)T−1 is made so that the discrete momentum

µ(γt−1, γt) :=

(
−
∑N

j=1 mj(γ
t−1
j × γt

j)

−
∑N

j=1 mj∆γt

)

matches the designed µt. This is enforced computationally by iteratively finding zeros
of the residual momentum constraint function

φt : SE(3)→ R3 × R3, gt 7→ µ(γt−1, gt · st)− µt, (4.1)

for t = 2, . . . , T . Algorithm 1 describes a variational integrator, which is known to
have nice properties such as long-term energy preservation [10].

Algorithm 1 IntegrateTrajectory

1: Input: shapes s ∈ ST , momenta µ2, . . . , µT ∈ R6

2: Output: physical lift γ ∈MT .
3: γ1 ← Id(s1)

4: for t = 2, . . . , n do
5: gt ← solve µ(γt−1, gt · st)− µt = 0 ▷ Equation 4.1
6: γt ← gt · st
7: end for

We solve Equation 4.1 by feeding the Jacobian of φt to MINPACK’s HYBRD
algorithm [11]. Although the rigid transformations are SE(3) elements, in practice
we allow the root solver to return elements that do not strictly live on SE(3), and
instead simultaneously minimize the local defining function for SE(3)

R12 ∼= R3×3 × R3 → R, (A, b) 7→ ∥A⊤A− I∥.

and further project the result onto SE(3). For this reason, we compute Euclidean
derivatives rather than Lie derivatives of φt with respect to the rigid body transfor-
mations. In our code, we build the partial Jacobian ∂φt/∂gt as a matrix of directional
derivatives where each row is given by(

∂φt

∂gt

)
i

= Dφt(gt)[ei] =

(
−
∑N

j=1 mj(γ
t−1
j ×Dγt

j(g
t)[ei])

− 1
2

∑N
j=1 mjDγt

j(g
t)[ei]

)⊤

−Dµt(gt)[ei] (4.2)

for basis vectors ei ∈ R12. Note that some parametrisations of µt depend on gt, so
Dµt(gt)[ei] is in general non-zero, and its computation is addressed in section 4.3. To
compute Dγt

j(g
t)[ei], note that the Euclidean directional derivative of γ(g) = g · s =

As+ b is given by
Dγ(g)[g′] = A′γ(g) + b′.

For the full control algorithm, we also require partial Jacobians ∂φt+1/∂gt for
t = 2 . . . T − 1, which is computed similarly.

16



Orfeas Liossatos CHAPTER 4. METHOD OVERVIEW

4.2 Optimisation algorithm

To solve the optimisation problem in Equation 3.1, we compute the gradient of the
objective function with respect to the design variables, and feed the gradients to the
L-BFGS optimisation algorithm [4]. The following theorem shows how to compute
gradients with respect to any design variable related to momentum, denoted by ν.

Theorem 2. Given a design variable ν, independent of the shapes s ∈ ST , the partial
differential of a position-based objective function J(g2, . . . , gT ) with respect to ν is

∂J

∂ν
= −

T∑
t=2

w⊤
t

∂µt

∂ν
,

where g2, . . . , g
T are the zeros of φ2, . . . , φT , and the adjoint vectors wt are solutions

to the recursive linear equations

−∂φt

∂gt

⊤

wt =
∂φt+1

∂gt
wt+1 +

∂J

∂gt
, (4.3)

with wT+1 = 0 as a base of the recursion.

Proof. First, consider the total differential

dφt

dν
=

∂φt

∂gt
∂gt
∂ν

+
∂φt

∂gt−1

∂gt−1

∂ν
− ∂µt

∂ν
.

Since gt are assumed to be the zeros of φt, and this remains true for any variation of
ν, we have dφt

dν = 0,∀t, and so we may deduce the differentials of the positions

∂gt
∂ν

=

(
∂φt

∂gt

)−1(
∂µt

∂ν
− ∂φt

∂gt−1

∂gt−1

∂ν

)
,

while the differential of g2 simplifies to

∂g2
∂ν

=

(
∂φ2

∂g2

)−1
∂µ2

∂ν
,

since g1 is fixed. Next, we compute the differential of the objective. Expanding the
first term we find

∂J

∂ν
=

∂J

∂gT
∂gT

∂ν
+

T−1∑
t=2

∂J

∂gt
∂gt

∂ν
(4.4)

=
∂J

∂gT

(
∂φT

∂gT

)−1
∂µT

∂ν
− ∂J

∂gT

(
∂φT

∂gT

)−1
∂φT

∂gT−1

∂gT−1

∂ν
+

T−1∑
t=2

∂J

∂gt
∂

∂ν
gt, (4.5)

which motivates use of the adjoint vector wT in Equation 4.3. Plugging this back into
Equation 4.5 we find

∂J

∂ν
= −w⊤

T

∂µT

∂ν
+ w⊤

T

∂φT

∂gT−1

∂gT−1

∂ν
+

T−1∑
t=2

∂J

∂gt
∂gt

∂ν
(4.6)

= −w⊤
T

∂µT

∂ν
+

(
∂φT

∂gT−1

⊤

wT +
∂J

∂gT−1

⊤
)⊤

∂gT−1

∂ν
+

T−2∑
t=2

∂J

∂gt
∂gt

∂ν
, (4.7)
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which exhibits a recursive structure, motivating the use of the next adjoint vector
wT−1 in Equation 4.7, yielding

∂J

∂ν
= −w⊤

T

∂µT

∂ν
− w⊤

T−1

(
∂µT−1

∂ν
− ∂φT−1

∂gT−2

∂gT−2

∂ν

)
+

T−2∑
t=1

∂J

∂gt
∂gt

∂ν

= −
T∑

t=T−1

w⊤
t

∂µt

∂ν
+

(
∂φT−1

∂gT−2

⊤

wT−1 +
∂J

∂gT−2

⊤
)⊤

∂gT−2

∂ν
+

T−3∑
t=1

∂J

∂gt
∂gt

∂ν
.

Repeating this process, we get

∂J

∂ν
= −

T∑
t=3

w⊤
t

∂µt

∂ν
+

(
∂µ3

∂g2

⊤

w3 +
∂J

∂g2

⊤
)⊤

∂g2

∂ν
= −

T∑
t=2

w⊤
t

∂µt

∂ν
,

which concludes the proof.

Thus we have the following optimisation algorithm for the design of world mo-
menta. The algorithm must be adapted for higher level design variables using the
chain rule, which we explore in section 4.3.

Algorithm 2 OptimizeMomentumSequence

1: Input: objective J : MT → R≥0, initial guess s ∈ ST , µ ∈ (R6)T−1

2: Output: optimal shape and momentum sequences s∗ ∈ ST , µ∗ ∈ (R6)T−1.
3: while not Converged(J(γ)) do
4: γ ← IntegrateTrajectory(s, µ) ▷ Algorithm 1

5: LT , rT ← −∂φT

∂gT

⊤
, ∂J
∂gT

6: wT ← Solve(LTwT = rT ) ▷ Equation 4.3
7: dJ

dsT ← −w
⊤
T

∂µT

∂sT

8: dJ
dµT ← −w⊤

T

9: for t = T − 1, . . . , 2 do

10: Lt, rt ← −∂φt

∂gt

⊤
, ∂φt+1

∂gt wt+1 +
∂J
∂gt

11: wt ← Solve(Ltwt = rt) ▷ Equation 4.3
12: dJ

dst ← −w
⊤
t

∂µt

∂st − w⊤
t+1

∂µt+1

∂st

13: dJ
dµt ← −w⊤

t

14: end for
15: d← L-BFGS(s, µ, dJ

ds ,
dJ
dµ ) ▷ Descent direction

16: s, µ← Linesearch(J, s, µ,d)
17: end while

4.3 Gradients with respect to design variables

Since the control of shapes in covered in detail in Becker et al., we focus on the control
of design variables related to world momentum µt as per subsection 3.2.2. To recap,
depending on the choice of parametrisation µt+1 could depend on gt. For instance, if
µt+1 is parametrised from body momenta via the formula µt+1 = Ad∗gt µt+1

body. There-
fore, to build the Jacobian ∂φt+1/∂gt in the algorithm, we compute the directional
derivative of µt+1 with respect to gt along an arbitrary g′. Then, with the chain rule,
we show how to deduce the gradient of J with respect to the chosen design variables.
For these reasons, we provide these formulae in we summarise in Table 4.1.
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Parametrisation Gradient
(
∂J
∂ν

)
Directional Derivative Dµt+1(gt)[g′]

World momentum µt −w⊤
t 0

Body momentum µt
body −w⊤

t [Ad∗gt−1 ] (A′l + b×A′p+ b′ ×Ap, A′p)

World forcesf t
world −

∑T
τ=t w

⊤
τ 0

Body forces f t
body −

∑T
τ=t w

⊤
τ [Ad∗gτ−1 ] Same as for body momentum, with f t+1

body

Directional thrust ∥f t∥f t
fixed

∂J

∂f t
body

· f t
fixed Same as above, with f t+1

body = ∥ft+1∥f t+1
fixed

Offset / pinned forces f t
offset

∂J

∂f t
body

[Ad∗h(st−1)] Same as above, with fbody
t+1 = Ad∗h(st)f

offset
t+1

Table 4.1: Gradients and directional derivatives for different momentum parametri-
sations.

Discrete world momentum The simplest case is the direct control of the world-
frame momenta µt, for which Theorem 2 gives

∂J

∂µt
= −w⊤

t

Dµt+1(gt)[g′] = 0.

Discrete body momentum If instead one controls the body momentum µt
body

through the change-of-frame parametrisation

µt = Ad∗gt−1(µt
body)

then we have
∂J

∂µt
body

=
∂J

∂µt

∂µt

∂µt
body

= −w⊤
t [Ad∗gt−1 ]

where [Ad∗gt−1 ] is the 6× 6 matrix representing the group co-adjoint action. One may
avoid building the group co-adjoint action matrix with the following lemma.

Lemma 2. For g = (A, b) ∈ SE(3), the matrix-vector product of the transpose of the
group co-adjoint action on a vector µ ∈ R6 is equal to

[Ad∗g]
⊤µ = η

(
Ad∗g−1(η(µ)

)
,

where η : (a, b) 7→ (b, a) is an involution of first and last three components of µ ∈ R6.

Proof. Starting from the right hand side of Lemma 2, we are interested in the group co-
adjoint action with respect to the inverse rigid body transformation g−1 = (A⊤,−A⊤b)

on the involution of µ = (l, p) ∈ R6. By definition, we have

η
(
Ad∗g−1(p, l)

)
=

(
A⊤l

A⊤p−A⊤b×A⊤l

)
.

On the other hand, the transpose of the 6×6 matrix [Ad∗g] representing the group
co-adjoint action is (

A [b]×A

0 A

)⊤

=

(
A⊤ 0

−A⊤[b]× A⊤

)
,
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so that its application to µ also gives

[Ad∗g]
⊤
(
l

p

)
=

(
A⊤l

A⊤p−A⊤b×A⊤l

)
,

which concludes the proof.

For the momentum derivative, we have

Dµt+1(gt)[g′] =
(
A′lt+1 + bt ×A′pt+1 + b′ ×Atpt+1, A′pt+1

)
, (4.8)

where g′ = (A′, b′), gt = (At, bt) and µt+1 = (lt+1, pt+1). To explain this formula,
recall that we are interested in the Euclidean directional derivative of the function

SE(3)→ se(3)∗, g 7→ Ad∗g(µ),

so consider the Euclidean extension of the group co-adjoint action on some general
µ = (l, p) ∈ R6

A∗
µ : R12 → R6, g = (A, b) 7→ (Al + b×Ap,Ap).

Then we compute the directional derivative

DA∗
µ(g)[g

′] =
dA∗

µ

dt
(g + t(A′, b′))

∣∣∣∣
t=0

= lim
t→0

1

t

(
A∗

µ(g + t(A′, b′)−A∗
µ(g))

)
= lim

t→0

1

t

(
tA′l + tb×A′p+ tb′ ×Ap+ t2b′ ×A′p, tA′p

)
= (A′l + b×A′p+ b′ ×Ap,A′p),

which is the required formula.

Discrete world forces Another simple case is when we have a handle over world
forces f t

world via the formula

µt =

t∑
τ=2

fτ
world.

Then the gradient of the objective function with respect to the world forces is

∂J

∂f t
world

= −
T∑

τ=t

w⊤
τ ,

and due to the independence of the world forces on the rigid body transformations
we have

Dµt+1(gt)[g′] = 0.

Discrete body forces When we control the body forces f t
body pushing on body’s

centre of mass then the momentum is given by

µt =

t∑
τ=2

Ad∗gτ−1(fτ
body).
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The corresponding gradient of the objective function is

∂J

∂f t
body

= −
T∑

τ=t

w⊤
τ [Ad∗gτ−1 ],

and the directional derivative of momentum is similar to the case of body momentum,

Dµt+1(gt)[g′] = D(Ad∗gt(f t+1
body))(g

t)[g′],

which is computed as in Equation 4.8.

Discrete directional forces Sometimes forces can only be directed in a particular
direction ffixed ∈ R6, and we have control over magnitudes ∥f t∥. Then the world
momentum is computed via

µt =

t∑
τ=2

Ad∗gτ−1(∥fτ∥ffixed).

The gradient of the objective function can be computed through the chain rule

∂J

∂∥f t∥
=

∂J

∂f t
body

∂f t
body

∂∥f t∥
=

∂J

∂f t
body

ffixed,

given that f t
body = ∥fτ∥ffixed. As for the the directional derivative of momentum, we

we compute
Dµt+1(gt)[g′] = D(Ad∗gt(∥f t+1∥f t+1

fixed))(g
t)[g′].

with Equation 4.8, as before.

Offset and pinned forces If the forces are offset with respect the centre of mass
of the object due to a (potentially constant) map from shapes to rigid body transfor-
mation h : S → SE(3), then we have

µt =

t∑
τ=2

Ad∗gτ−1h(sτ−1)(f
τ
offset).

So the gradient of J can be computed through the chain rule

∂J

∂f t
offset

=
∂J

∂f t
body

∂f t
body

∂f t
offset

=
∂J

∂f t
body

[Ad∗h(st−1)],

since f t
body = Ad∗h(st−1)(f

t
offset), and can be efficiently computed with Lemma 2. As

for the the directional derivative of momentum, we compute

Dµt+1(gt)[g′] = D(Ad∗gth(st)(f
t+1
offset))(g

t)[g′].

with Equation 4.8, as before.
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Experiments

We demonstrate the algorithm in scenarios of increasing complexity. The full list
of experiment details, including choice of design variables, computation times, and
convergence information can be viewed at Table 5.1.

Figure Variable Bound T Iters Time Conv. Note
5.1c µworld - 30 170 3m Yes -
5.2b µworld - 30 133 5m Yes -.
5.2c µbody - 30 1000 21m No |∂J/∂µbody| ≃ 10−5

5.3a fworld [-1,1] 30 512 10m Yes -
5.3b fworld [-1,1] 30 1000 20m No ∆J ≃ 10−5

5.4 foffset [-0.1,0.1] 30 ≃30 1m Yes -
5.5c fpinned [-0.1,0.1] 30 ≃8 30s Yes Rand. Init.

Table 5.1: Table of computation times for our Python 3.11 script running on an In-
tel(R) Core(TM) i7-8750H CPU @ 2.20GHz. We say that the optimisation converges
if the projected gradient norm is less than 10−7 or if the objective function value
changes by less than 10−12. All variables were initialised to zero except for the ex-
periment in Figure 5.5.

5.1 Controlling a rigid body

We begin by showing that we have control over the motion of a completely rigid body,
so we focus on a shape space with a single element: a tetrahedron with uniform mass
density. In Figure 5.1 the tetrahedron must reach three checkpoint transformations
by controlling its world-frame momentum.

The optimal motion trajectory Figure 5.1c deviates from a perfectly straight line
for two reasons. First, there is no particular constraint on the intermediate positions
other than that they should eventually bring the body closer to the checkpoints. Sec-
ond, for the last two checkpoints, the designed world-frame momentum must express
infinitesimal translation along a line, but this is only possible if the tetrahedron addi-
tionally rotates. Therefore, designing the momentum in body-frame is more natural
in this scenario. Thus in Figure 5.2 we show how L2-regularisation of momentum
may be leveraged to encourage straighter paths.
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(a) Objective positions (b) Initial sequence (c) Optimised sequence

Figure 5.1: Demonstrating the design of world-frame momentum. The left
figure (a) shows the objective, which is to reach three designated positions in intervals
of 10 time steps, matching the orientations at each position. The middle figure (b)
shows the initial state of the algorithm, where the momentum of is zero and thus the
rigid body stays still. The right figure (c) shows the final state of the algorithm with
the corresponding motion trajectory, matching the objective positions perfectly.

In physical motion design, rather than controlling momentum directly, we typically
only have leverage over forces. The difference between the design of momentum
and the design of forces is that a rigid body cannot instantly change its direction.
Rather, a force must counteract the sum of all cumulated forces up until that point.
Simultaneously, we may want to use the least amount of force, in bursts, while still
achieving the motion objective. We demonstrate this for the tetrahedron in Figure 5.3
using the L1-regularisation of world forces, encouraging their sparsity.

Now, we may control body forces just as well as body momentum. In addition,
we show how the optimisation can handle offset forces. That is, forces that are some
rigid body transformation away from the centre of mass of the tetrahedron. For this,
we set up an experiment in Figure 5.4 where the tetrahedron must simply move one
unit forward, under different offsets.

5.2 Controlling a shape-changing body

These tetrahedra have the privilege of omni-axis thrust and torque, but real-world
propulsion systems are often-times merely unidirectional. This immensely constrains
the set of achievable motion trajectories, unless there is some mechanism to direct the
forces through shape change. In one final experiment, we describe a system that must
precisely combine shape change and forces in order to follow a motion trajectory that
would not be achievable by shape change or forces alone.
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(a) Objective positions (b) Optimised µworld (c) Optimised µbody

Figure 5.2: Straightening motion paths with the design of body-frame mo-
mentum and regularisation. The left figure (a) shows the objective, which is to
reach two designated positions in an elbow arrangement in intervals of 15 time steps,
matching the orientations at each position, while simultaneously minimising the L2-
norm of the design variable with regularisation weight 10−5. The middle figure (b)
shows the converged path for world-frame momentum, where it is impossible to reg-
ularise away the rotational component of the world momentum. The right figure (c)
shows the converged path for body-frame momentum, where the body-frame momen-
tum is almost constant between checkpoints.
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(a) Optimised fworld trajectory (b) L1-regularised fworld trajectory

(c) Optimised fworld components (d) L1-regularised fworld components

Figure 5.3: Demonstrating the design of world-frame forces. We use the same
checkpoints objective function as in Figure 5.1a. The top row of figures shows the
designed motion trajectory, and the bottom row of figures shows the components
of the world-frame force vector over time. In the right hand column, of figures, an
additional L1 regularisation term is added to the objective function with weight 10−2.
This causes a sparsity pattern to appear in figure (d), and the trajectory to tighten up
overall. In the regularised case, the optimisation slowed immensely and the maximum
number of iterations was reached before convergence. We only expect the sparsity
pattern to get more pronounced as the computational budget increases.
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(a) Position objective (b) Optimised foffset (offset by local Z)

(c) Optimised foffset (offset by local Y ) (d) Optimised foffset (offset by local X)

Figure 5.4: Designing offset body forces. In the top-left figure (a) a simple
position objective is described. In figures (b), (c), and (d), four frames at regular
time intervals are plotted. Alongside the tetrahedron is a black anchor point that is
at an offset from the centre of mass of the tetrahedron. Forces foffset push against the
anchor point, which in turn pushes the tetrahedron. The red arrows represent linear
forces, while the orange arrows represent torque (following the right-hand rule). In
the order of (b), (c), (d), the offsets are in the Z, Y, and X directions of the local
body frame. The algorithm is able to balance torque and forces in order to steer the
tetrahedron perfectly towards the target position.
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(a) Pinned force setup (b) Initial fpinned (c) Optimised fpinned

Figure 5.5: Co-design of shapes and pinned forces. In this experiment, a flap
must rotate 90 degrees about the Y-axis. In order for this to happen, it must time its
forces and shape changes precisely. On one hand, if the flap is completely open, then
the force cannot by itself lift the shape out of plane. On the other hand, because the
flap has a single degree of freedom, it cannot generate a geometric phase to rotate
itself about the Y-axis. Therefore both shape change and forces must at once for
the flap to move out of plane. On the left figure (a) is the setup, with a flap shape
generated by its dihedral angle and a unidirectional force pinned to the tip of one of
its wings. In the middle figure (b) a random initial sequence of dihedral angles and
forces are generated. In the third figure (c) the flap reaches a good 90 degree tilt.
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Discussion

Our results demonstrate that meaningful control can be achieved even in constrained
systems limited directions of propulsion thanks to the interaction of shape change and
force direction.

6.1 Limitations

Given that we build off the work of [2], we inherit many of the same limitations.
Namely, there is an inherent trade-off between the motion objectives and regulari-
sation, which can result in bad motion trajectories. Furthermore, the optimisation
very often gets stuck and is unable to continue unless particular conditions are met.
For example, far away position objectives tend to be more difficult to satisfy, and if
the design variables are initialised randomly, the algorithm may need to be re-run
multiple times before L-BFGS gets a handle on the curvature of the optimisation
landscape, especially in Figure 5.5.

Future directions In our toy example of a hinged flap, we prevent self-intersection
with hard angle constraints. However, animals that move by combining shape change
and propulsion, like a squid, have no such hard constraints. Thus correct simulation
of such an animal might incorporate a self-repelling energy term to discourage self-
intersection, such as the repulsive energy in Sassen et al.. Otherwise, if it is interesting
to move towards physical interpolation of animation frames that includes contact with
rigid objects (for instance, a walk cycle), then it could be of interest to look towards the
work of Li et al.. Finally, we have mostly looked at the shape-change and propulsion
of singular mechanisms, but it could be interesting to discover modes of locomotion
that involve multiple bodies at once.

6.2 Conclusion

We have tackled the inverse geometric propulsion problem. That is, we have devel-
oped and validated an efficient gradient-based algorithm for designing shape changes
and momentum in order to achieve particular motion objectives. Along the way,
we have drawn from ideas in differential geometry so that our method generalises
to any configuration space of shapes in correspondence. Our examples validate the
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basic premise of the method, and serve as building blocks for potential applications
in robotics and computer animation.
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