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Abstract—Why can convolutional neural networks gen-
eralise with less data than fully connected neural networks,
when in many computer vision tasks, the latter may
simulate the former? This report advances the hypothesis
that the difference arises from the data distribution and
choice of optimisation algorithm, by describing a natu-
ral binary image classification task based on the wave
patterns formed by the two-dimensional inverse discrete
Fourier transform. We empirically demonstrate that in the
over-parameterised regime, when employing the optimiser
Adam, a shallow fully connected network requires more
samples to generalise than a max-pooling convolutional
neural network, even when controlling for the number
of parameters in both models. For square images with d
pixels, the fully connected network needs on the order of
Ω(d) samples to generalise while the convolutional neural
network requires O(1). 1

I. INTRODUCTION

If we require a model to classify images at a fixed
test accuracy, how much data do we need relative to
the image size? If we don’t define a data distribution,
then we must require successful learning even for the
worst-case distribution. Vapnik-Chervonenkis (VC) the-
ory asserts that if it is at all possible for an instance
of the model architecture to reach said accuracy, then it
should depend on the expressiveness of the architecture
itself: its VC-dimension. But if one model architecture is
a subset of the other, like how a fully connected neural
networks (FCNNs) can simulate a convolutional neural
network (CNNs) by zeroing-out many of its weights,
then the difference in their performance must be a result
of the underlying distribution and chosen optimisation
algorithm.

1Python notebooks are available at https://github.com/
orfeasliossatos/Semester-Project/blob/main/Tasks/Project.ipynb

Explanations of this performance difference have been
made by exhibiting natural image classification tasks
that induce a sample complexity gap as a function of
the number of pixels in the image (input dimension d).
For instance, Li et. al. (2020) [1] describe the task of
determining whether the 2-norm of half of the pixels
is greater than the rest, yielding a provable gap that
is quadratic in d, when both the FCNN and CNN are
trained with SGD, albeit on a highly simplified CNN
architecture. We generalize this class of tasks to a
“difference of p-norms” (DOp) where p > 0. In the
same vein, Brutzkus et. al. (2021) [2] describe a task
of determining whether an image contains a given “pos-
itive” or “negative” pattern in a sea of spurious patterns.
They show the potential for a gap between a max-pooling
CNN with non-overlapping convolution kernels trained
with the non-standard optimisation algorithm “layer-wise
gradient descent”, and a one-hidden layer FCNN with
leaky ReLU activations trained with SGD. For the CNN
they prove an upper bound on the sample complexity that
is linear in the kernel size k and constant in the input
dimension: O(k). For the FCNN they prove a quadratic
upper bound O(d2) but we note that no lower bound on
the sample complexity was proven.

In this report, we consider a natural image classifica-
tion task we name “noisy Fourier patterns” (NFP) based
on the wave patterns formed by the two-dimensional
inverse discrete Fourier transform, and train CNNs and
FCNNs with realistic architectures up to a fixed accuracy
on increasing image sizes with Adam, to observe the
required number of samples. In section II we recall fun-
damental definitions from VC theory. In section III we
describe the data distribution, models, training protocol,
and sample complexity estimation method for both tasks
DOp and NFP. In section IV we report our results and
interpret the measurements observed in Figure 3.

https://github.com/orfeasliossatos/Semester-Project/blob/main/Tasks/Project.ipynb
https://github.com/orfeasliossatos/Semester-Project/blob/main/Tasks/Project.ipynb


II. BACKGROUND

A. Preliminaries

We recall the definitions of probably approximately
correct learning (PAC-learning), VC-dimension, and em-
pirical risk minimisation as per Shalev-Shwartz (2014)
[3], simultaneously introducing notation for different
components of the learning environment.

Definition 1 (Agnostic PAC-Learnability). Let X ,Y be
input and output domains. For any ϵ, δ ∈ (0, 1), a
hypothesis class (model architecture) H = {h : X → Y}
is agnostic (ϵ, δ)-PAC-learnable if there exists a learning
algorithm A taking a finite set of training samples
S = {(xi, yi)}mi=1 and returning a hypothesis A(S) ∈ H,
and a minimum sample size function mH(ϵ, δ) such
that for any distribution D over (X ,Y), the true loss
of the hypothesis A(S), is within a accuracy ϵ of the
true loss LD of the best hypothesis h∗ ∈ H with
probability at least 1 − δ over the randomness of the
sample S

iid∼ Dm for every m ≥ mH(ϵ, δ). Formally,
PS{LD(A(S)) ≤ LD(h

∗) + ϵ} ≥ 1− δ.

For a given learning algorithm (hypothesis class +
optimiser), we are interested in its sample complexity:
the asymptotic behaviour of the minimum sample size
function mH(ϵ, δ) in terms of the input dimension d,
supposing X ⊆ Rd. A core principle of VC theory is
that one needs more samples to learn richer hypothesis
classes. So we recall the definition of VC-dimension,
which is a notion of hypothesis class expressiveness.

Definition 2 (VC-Dimension). A hypothesis class H
shatters a finite set C ⊂ X if the restriction of H to
C is the set of all functions from C to {0, 1}. The VC-
dimension VCdim(H) of the hypothesis class H is the
maximal size of a set C ⊂ X that can be shattered by
H.

The true distribution D is unknown to the learning
algorithm A which only sees a finite set of samples
S

iid∼ Dm. The performance of a hypothesis h can
still be tracked with an empirical loss LS(h) that is
an unbiased estimator of the true loss LD(h). Learning
algorithms that can minimise the empirical loss are often
theoretically useful.

Definition 3 (Expected Risk Minimiser). An expected
risk minimising algorithm ERMH outputs a hypothesis in
H that minimises the empirical loss over a set of training
samples S. Formally, ERMH(S) = argminh∈H LS(h).

B. Sample Complexity Bounds from VC Theory

Sample complexity bounds resulting from VC theory
are typically conservative, as the learning algorithm is
required to learn any distribution D over (X ,Y), whereas
in many applications we typically want to know the
sample complexity for particular classes of distributions.
Nevertheless, for binary classification tasks with Y =
{0, 1}, Blumer et. al. (1989) [4] showed that for a sample
size of at least

mH(ϵ, δ) = Ω(max{1
ϵ
log

1

δ
,
1

ϵ
VCdim(H) log

1

ϵ
}),

any expected risk minimiser that achieves zero empirical
loss will (ϵ, δ)-PAC-learn the hypothesis class. More
recently, Hanneke (2016) [5] showed in the realisable
case LD(h

∗) = 0 that there is an optimal algorithm
based on a majority vote of expected risk minimisers
that (ϵ,δ)-PAC-learns with

mH(ϵ, δ) = Θ(
1

ϵ
(VCdim(H) + log

1

δ
)).

Furthermore, the VC-dimension of various neural net-
work architectures have been proven.

1) FCNNs: Harvey et. al. (2017) [6] derive an upper
bound on the VC-dimension of a L-layer fully con-
nected neural network with W parameters and ReLU
activations: VCdim(FCNN) = O(WL logW ). When the
network has only a single hidden layer with a bounded
number of neurons, then the number of parameters of
the network scales linearly with the input dimension d,
so VCdim(FCNN) = O(d log d).

2) CNNs: Brutzkus et. al. (2021) [2] find a lower
bound for the VC-dimension of CNNs with a fixed
number of filters, non-overlapping convolutions, a global
max-pooling layer, and a final fully connected layer with
ReLU activations. VCdim(CNN) ≥ 2d. 2

C. Sample Complexity Gaps

The sample complexity bounds from VC theory are
conservative since the learning algorithm A is meant to
(ϵ, δ)-PAC-learn any distribution D over (X ,Y). There-
fore, when we restrict in advance the set of possible
distributions to a class P , the sample complexity will
generally decrease. Although the sample complexity
bounds in terms of VC-dimension are informative for the
optimal algorithm, we are interested in ranking particular
learning algorithms (hypothesis class + optimiser) in
terms of their sample complexities. When we combine
these two facts, we may observe sample complexity gaps
between different kinds of learning algorithms.

2They shatter a set of size 2
n
k
−1 where k is the kernel size.



Fig. 1: Samples from DO2, with input dimension d =
402.

Definition 4 (Sample Complexity Gap). Let there be two
learning algorithms A1 and A2. Fix a class of data dis-
tributions P over X ⊂ Rd and Y . We observe a sample
complexity gap between A1 and A2 if mH1

= Ω(f(d))
and mH2

= O(g(d)), where g = o(f) with f , g being
non-decreasing functions of the input dimension d.

Such hard sample complexity gaps have been shown
in Li et. al. (2020) [1]. For a simple pattern-recognition
task, any permutation-equivariant learning algorithm
(that is, one where permuting the data axes doesn’t affect
the output hypothesis such as simple FCNNs trained with
Adam) needs at least Ω(d) samples, while the empirical
risk minimizer ERMCNN requires only O(1) samples.

III. MODELS & METHODS

We fix a test accuracy goal of ϵ = 80% and compare
two models III-B on two binary image classification
tasks III-A across multiple image sizes and fit monomials
to the means of recorded number of samples to obtain
an estimate of the sample complexity.

A. Tasks

We slightly generalize the difference of 2-norms task
defined in Li et. al. (2020) [1], and define our own noisy
Fourier pattern task.

1) Difference of p-norms (DOp): An input is an entry-
wise normal square image X ∋ X ∼ N (0, 1)d with
d a square number. Furthermore for p > 0, define the
labelling function hp(X) = 1[

∑d/2
i=1 x

p
i >

∑d
i=d/2+1 x

p
i ].

Then Y = hp(X) is the corresponding label in {0, 1}.
Some samples can be seen in Figure 1. This task is
natural in the sense that it can be a specific bright pattern
detector, depending on the indexing of the pixels xi.

Fig. 2: Samples from NFP with 8 different complex
frequencies with input dimension d = 402, represented
in the top row with color corresponding to the complex
angle. The lowest frequencies increase from the top-left
corner and hence wrap around to the other sides. The
bottom row is the corresponding L1-normalised pixel-
wise modulus of the IFDT, with additive noise in the
case of label 1.

2) Noisy Fourier Patterns (DFP): In a blank square
image X̂ with d pixels, assign random numbers on
the complex unit circle to F = 8 different random
points in a low-pass box of sidelength

√
d/2. Compute

the two-dimensional inverse discrete Fourier transform
with pixel-wise modulus |IDFT (X̂)| and standardise
the pixel values to mean 0 and variance 1. Call this M .
On the side, generate a label Y ∼ Ber(0.5) in {0, 1}. If
Y = 1, obfuscate M with noise Z ∼ N (0, 1)d. Finally,
normalise and rescale as follows.

X = L2 M + Y Z

(||M + Y Z||1 + 10−6)

A few samples can be seen in Figure 2. We claim that this
resembles realistic computer vision tasks, as important
features of a photo such as the face, ears, and eyes
could correspond to low frequency components of the
image’s Fourier transform, and features such as face
texture and individual strands of hair could correspond
to high frequency components, represented by the added
noise.

B. Models

We compare a max-pooling CNN to a FCNN with a
single hidden layer. We match the FCNN’s number of
parameters to that of the CNN by adjusting the number
of neurons in the hidden layer. The final outputs of the
models are run through a logistic function σ such that



the outputs fall within the range (0, 1). We are working
in an over-parameterised regime because the number of
output channels of the CNN is large enough to fit the
training data with approximately zero training loss over
a wide range of image sizes. The models are defined as
follows:

a) CNN: A convolutional layer with one in-channel
and C = 1000 out-channels with kernel size k = 9,
stride 1, and padding, followed by ReLU activations and
a max-pooling layer with non-overlapping kernels of size
4, and finally a fully connected layer with Cd/4 inputs
and one output. It can therefore be noted that the total
number of parameters pCNN = CK + Cd/4 increases
linearly with the image size.

b) FCNN: A fully connected neural network with
one hidden layer with Q neurons and ReLU activations.
We note that the number of parameters is pFCNN = dQ+
Q. In order to match pCNN to pFCNN as close as possible,
we let Q = max{1, ⌊ pCNN

(d+1)⌋}.
Our choice of parameter count stands in contrast to

the model architectures proposed in Li et. al. (2020) [1],
where the O(1) upper bound is achieved by a CNN with
just two output channels, yielding a VC dimension of
3. Instead, we work with a FCNN and CNN with more
realistic capacity, and impose an extra fairness constraint
of matching the number of parameters in both models.

C. Training and Testing

We train with Adam against a Binary Cross Entropy
Loss function, with image batches of size B = 64
until the model reaches test loss of 80%. The learning
rates η were chosen manually to avoid jumping or slow
convergence, and are summarised in Table I. In order to
strike a balance between total run-time and measurement
accuracy, we adopted the following training protocol.

1) When the model obtains a training loss of 0.5, we
test the model against a set of 1000 fixed image-
label pairs and compute the test accuracy α.

2) If the obtained accuracy surpasses the requirement
α > ϵ, then stop and record the total number of
samples. Otherwise, lower the training loss goal
by 0.025 and return to 1).

Of course, since batch training is discrete and the sample
generation process is random, it can happen that the
model overshoots the test-loss goal of ϵ. However, in
practice it never appeared to overshoot by a large margin,
and we perform the experiment 5 times to average out
randomness.

TABLE I: Learning rates

η DO2 NFP
CNN 0.0001 0.00005

FCNN 0.001 0.005

Fig. 3: Sample complexity estimates for FCNNs and
CNNs with ReLU activations trained on the difference of
2-norms (DO2) and noisy Fourier patterns (NFP) tasks
with Adam until at least 80% test accuracy on a set of
1000 image-label pairs. For each input dimension , five
estimates were taken. Vertical error bars (grey) are the
standard deviations in the estimations of the required
training set size. The number of required training sam-
ples explodes in DO2 with FCNNs, so we compensate
by performing the experiment over a reduced range of
42 to 162.

D. Degree Estimation

We train on a range of even image widths
√
d ∈

{10, 12, 14 . . . , 40}. The image sizes are even because
the square max-pooling kernels of the CNN are of
width 2, so the parameter count only increases when the
image width increases by 2. Including every image width
would therefore result in a jagged graph. We perform
the sample complexity estimation a total of 5 times per
model and task, and then perform a nonlinear least-
squares regression to fit a monomial of the form axb

with a, b ∈ R≥0 in order to obtain estimates Ω(db). The
sample complexity graphs may be seen in Figure 3.

IV. RESULTS & DISCUSSION

The monomials of best fit are summarised in Table II.
For the task DO2, we observe a gap in the required
number of samples that grows at a roughly cubic rate



TABLE II: Monomials of best fit

m(d) DO2 NFP
FCNN 0.01d3.36 41.68d1.31

CNN 438.39d0.46 23090d0

of d2.91. This gap cannot be explained with the results
established in Li. et. al. (2020) [1] since they prove
either a quadratic gap for the case of all input distribu-
tions with h2 labelling × orthogonal-equivariant learning
algorithms, or a linear gap for a particular distribution
× permutation-equivariant learning algorithms. Further-
more, we observe that our max-pooling CNN requires
training data at rate of roughly

√
d, which is in contrast

to the O(1) result obtained for the simplified CNN with
quadratic activations on the same task in Li et. al. (2020).

For the task NFP, we observe a gap that grows at
a superlinear rate of d1.31. We remark that the CNN
appears to require a lot of training samples for smaller
input dimensions around d = 102, for which we don’t
have a clear explanation. The CNN’s sample complexity
eventually tapers to a constant, which could be explained
by the CNN potentially learning a small constant number
of filters that correspond to high frequency signals such
as noise, and classifying the rest as structured images.

V. CONCLUSION

We construct a naturalistic task based on Fourier
patterns which induces a sample complexity gap that we
estimate to be at least linear in the input dimension d be-
tween realistic, over-parameterised, parameter-matched
FCNN and CNN models trained with Adam. We also
observe a sample complexity gap that is roughly cubic
in d for the difference of 2-norms task. This is stronger
than the square gap predicted by Li et al. (2020) [1],
despite the fact that we are in the more realistic over-
parameterised regime for both models. An interesting
avenue for future research could be to explore the
possibility of rigorously proving the gaps we observe.
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